Minggu, 25 November 2012

Nama                    : Kurnianto
N I M                    : 0102512077
Program               : MP, S2 Kepengawasan
Mata Kuliah       : Bahasa Inggris

Descriptive Research
Descriptive research involves collecting data in order to test hypotheses or answer ques­tions concerning the current status of the subject of the study. A descriptive study determines and reports the way things are. One common type of descriptive research in­volves assessing attitudes or opinions toward individuals, organizations, events, or procedures; pre-election political polls and market research surveys are examples of th is type of descriptive research. Descriptive data are typically collected through a ques­tionnaire survey, an interview, or observation.
Descriptive research sounds very simple; there is considerably more to it, however, than just asking questions and reporting answers. Since one is generally asking ques­tions that have not been asked before, instruments usually have to be developed for specific studies; instrument development requires time and skill. A major problem fur­ther complicating descriptive research is lack of response-failure of subjects to return questionnaires or attend scheduled interviews. If the response rate is low, valid conclu­sions can not be drawn. For example, suppose you are doing a study to determine attitudes of principals toward research. You send a questionnaire to 100 principals and ask the question, "Do you usually cooperate if asked to participate in a research study?" Suppose 40 principals respond and they all answer "yes." Could you then conclude that principals cooperate? No! Even though all those who responded said "yes," those 60 who did not respond may never cooperate with research efforts. After all, they did not cooperate with you! Observational research also involves complexities that are not readily apparent. Observers must be trained and forms must be developed 50 that data will be collected objectively and reliably.

The following are examples of typical questions investigated by descriptive research studies :
1.    How do second·grade teachers spend their time? Second-grade teachers would be observed for a period of time and results would probably be presented as percent­ages, e.g., 60% of their time is spent lecturing, 20% asking or answering questions, 10% administering discipline, and 10% performing administrative duties, such as collecting milk money.
2.    How will citizens of Yortown vote in the next presidential election? A survey of citi­zens of Yortown would be taken (questionnaire or interview) , and results would probably be presented as percentages; e.g., 70% indicate they will vote for Peter Pure, 20% for George Graft, and 10% are undecided.
3.    How do parents feel about split-shift school days? Parents would be surveyed and results would probably be presented in terms of the percentages for, against, or undecided.

Penelitian Deskriptif
Penelitian deskriptif melibatkan pengumpulan data dalam rangka menguji hipotesis atau menjawab pertanyaan mengenai status subjek penelitian. Sebuah studi deskriptif menentukan dan melaporkan situasi yang ada. Salah satu yang umum dari penelitian deskriptif melibatkan sikap menilai atau pendapat terhadap individu, organisasi, peristiwa, atau prosedur,  jajak pendapat politik pra-pemiludan survei penelitian pasar adalah contoh dari adalah jenis penelitian deskriptif. Data deskriptif biasanya dikumpulkan melalui survei kuesioner, wawancara, atau observasi.
Penelitian deskriptif terdengar sangat sederhana, lebih jauh  dari itu, bukan sekedar bertanya dan melaporkan jawaban. Karena umumnya mengajukan pertanyaan yang belum ditanyakan sebelumnya, instrumen biasanya harus dikembangkan untuk studi tertentu, pengembangan instrumen membutuhkan waktu dan keterampilan. Masalah utama lebih rumit dari penelitian deskriptif adalah kurangnya respon-kegagalan subyek untuk kembali kuesioner atau menghadiri wawancara yang dijadwalkan. Jika tingkat respon rendah, tidak dapat ditarik kesimpulan yang valid . Sebagai contoh, misalkan Anda sedang melakukan penelitian untuk menentukan sikap kepala sekolah terhadap penelitian. Anda mengirim kuesioner kepada 100 kepala sekolah dan bertanya, "Apakah Anda biasanya bekerja sama jika diminta untuk berpartisipasi dalam studi penelitian?" Misalkan 40 kepala sekolah merespon dan mereka semua menjawab "ya." Bisakah Anda kemudian menyimpulkan bahwa kepala sekolah bekerja sama? Tidak ada! Meskipun semua orang yang menanggapi mengatakan "ya," mereka 60 yang tidak menanggapi mungkin tidak pernah bekerja sama dengan upaya penelitian. Setelah semua, mereka tidak bekerja sama dengan Anda! Penelitian observasional juga melibatkan kompleksitas yang tidak nampak. Pengamat harus dilatih dan bentuk harus dikembangkan 50 bahwa data akan dikumpulkan secara obyektif dan andal. 

Berikut ini contoh2 pertanyaan tipikal yg investigasi oleh studi penelitian deskriptif:
  1. Bagaimana guru2 kelas 2 memanfaatkan waktunya? Guru2 kls 2 akan diobservasi selama satu periode dan hasilnya mungkin akan dipresentasikan sebagai prosentase misalnya 60% waktunya digunakan mengajar, 20% bertanya atau menjawab pertanyaan, 10% melaksanakan disiplin administrasi, dan 10% melaksanakan tugas2 administrasi misalnya mengumpulkan uang susu. 
  2. Bagaimana warga Yortown akan memberikan suara pd pemilihan presiden yg akan dtg? Sebuah survey warga Yortown akan dilakukan (questioner atau interview), dan hasil2nya mgkn akan disajikan dlm prosentase misalnya 70% menunjukkan mereka akan memberikan suara utk Peter Pure, 20% utk George Graft, dan 10% tdk memutuskan. 
  3. Bagaimana para ortu merasakan hari2 sekolah paruh waktu? Orang tua akan disurvey dan hasilnya mgkn akan disajikan dlm prosentase utk setuju, menolak, atau tdk memutuskan. 

Correlational Research
Correlational research attempts to determine whether, and to what degree, a relation­ship exists between two or more quantifiable variables. The purpose of a correlational study may be to establish relationship (or lack of it) or to use relationships in making predictions. Relationship studies typically study a number of variables believed to be related to a major, complex variable, such as achievement. Variab!es found not to be highly related are eliminated from further consideration; variables that are highly related may suggest causal-comparative or experimental studies to determine if the relationships are causal. For example, the fact that there is a relationship between self-concept and achievement does not imply (hat self-concept "causes" achievement or that achievement "causcs" self-concept. Such a relationship only indicates that students with higher self-concepts have high er levels of achievement and students with lower self-concepts have lower levels of achievement. From the fact that two variables are highly related, one can­not conclude th at one is the cause of the other; there may be a third factor which "cau ses" both of the relater' variables. For example, suppose it were determined th at there is a high degree of relationship between number of years of schooling and in­come at age 40 (two quantifiable variables). The temptation might be to conclude th at if you stay in schoollonger you will make more money; this conclusion would not necessarily be justified. There might be a third variable , such as motivation, which "causcs" people to stay in school and do well in their jobs. The important point to remember is that correlational research never establishes a cause-effect rela­tionship, only a relationship.
Regardless of whether a relationship is a cause-effect relationship, the existence of a high relationship perrnits prediction. For example, high school grades and college  grades are highly related; students who have high GPAs in high school tend to have high GPAs in college, and students who have low GPAs in high school tend to have low GPAs in college. Therefore, high school GPAs can Le, and are, used to predict GPA in college. The degree of relationship between two variables is generally expressed as a correlation coefficient, which is a number between .00 and 1.00. Two variables that are not related will produce a coefficient near .00; two variables that are highly related will produce a coefficient near 1.00. Since very few relationships are perfect, prediction is rarely perfect. However, for many decisions, predictions based on known relationships are very useful.

The following are examples of typical correlational studies:
1.    The relationship between intelligence and creativity. Scores on an intelligence test and on a creativity test would be acquired from each member of a given group. The two sets of scores would be correlated and the resulting coefficient would indicate the degree of relationship.
2.    The relationship between anxiety and achievment. Scores on an anxiety scale and on an achievement test would be acquired from each member of a group. The two sets of scores would be correlated and the resulting coefficient would indicate the degree of relationship.
3.    Use of an aptitude test to predict success in an algebra course. Scores on an algebra aptitude test would be correlated with ultimate success in algebra as measured by fi­nal exarn scores, for example. If the resulting coefficient were high, the aptitude test would be considered a good predictor.

Terjemahan
Penelitian Korelasi
Berikut ini contoh2 tipikal studi korelasi:
1.       Hubungan antara intelegensia dg kreativitas. Skor atas uji intelegensia dan pd uji kreativitas akan diperoleh dr masing anggota kelompok yg ada. 2 kelompok skor akan dikorelasikan dan koefesien hasilnya akan menunjukkan tingkat keterkaitannya.
2.       Hubungan antara kecemasan dg prestasi. Skor2 pd skala kecemasan dan pd uji prestasi akan diperoleh dr masing2 anggota kelompok. 2 kelompok skor akan dikorelasikan dan koefesien hasilnya akan menunjukkan tingkat keterkaitannya.
3.       Penggunaan tes bakat utk memprediksikan kesuksesan di sebuah kursus aljabar. Skor2 pd uji bakat aljabar akan dikorelasikan dg kesuksesan akhir dlm aljabar krn diukur dg skor ujian akhir, Misalnya. Jika koefesien hasilnya tinggi, maka uji bakat akan dianggap prediktor yg baik.

Causal-Comparative and Experimental Research
While causal-comparative and expenrnantal research represent distinctly different methods, they can best be understood through comparison and contrast. Both attempt to establish cause-effect relationships; both involve group comparisons. The major dif­ference between them is that in experimental research the alleged "cause" is manipulated, and in causal-comparative research it is not. In experimental research, the alleged "cause, " the activity or characteristic believed to make a difference, is referred to as a treatment; the more general term for "cause" is independent variable. The difference, or "affect," which is determined to occur or not occur is referred to as the dependent variable. Dependent on what? Dependent on the independent variable. Thus, a study which investigates a cause-effect relationship investigates the effect of an independent variable on a dependent variable.
ln an experimental study the researcher manipulates at least one independent vari­able and observes the effect on one or more dependent variables. In other words, the researcher determines "who gets what," which group of subjects will get whlch treat­ment; the groups are generally referred to as experimental and control groups. Manipu­lation of the independent variable is the one single characteristic that differentiates ex­perimental research from other methods. Ideally, in experimental research the groups to be studied are randomly formed before the experiment, a procedure not involved in the other methods of research. The essence of experimentation is control. The re­searcher strives to insure th at the experiences of the groups are as equal as possible on all important variables except, of course, the independent variable. If, at the end of same period of time, groups differ in performance on the dependent variable, the dif­ference can be attributed to the independent variable. Because of the direct manipula­tion and control of variables, experimental research is the only type of research that can truly establish cause-effect relationships.

The folIowing are exarnples of typical experimental studies:
1.    The comparative effectiveness of programmed instruction versus traditional instruc­tion on computational skill. The independent variable, or cause, is type of instruction (programmecLversus traditional); the dependent variable, or effect, is computational skill. Two groups (preferably randomly formed) would be exposed to essentially the same experiences, except for method of instruction. After same period of time, their computational skill would be compared.
2.   The effect of self-paced instruction on self-concept. The independent variable, or cause, is pacing (self-pacing versus teacher pacing); the dependent variable, or ef­fect, is self-concept. Two groups (preferably randomly formed) would be exposed to essentially the same experiences, except for the pacing of instruction. After some period of time, their self-concepts would be compared.
3.    The effect of positive reinforcement on attitude toward school. The independent variable, or cause, is type of reinforcement (e.g., positive versus negative, or posi­tive versus none) ; the dependent variable , or effect, is attitude toward school. Two groups (preferably randomly formed) would be exposed to essentially the same ex­periences, except for the type of reinforcement received. After same period of time, their attitudes toward school would be compared.

In a causal-comparative study the independent variable, or "cause”: is not manipu­lated; it has already occurred. Independent variables in causal-comparative studies are variables which can not be manipulated (e.g., sex, male-female), should not be rnanip­ulated (e.g., brain damage) , or simply are not manipulated, but could be (e.g., method of instruction). In causal-comparative research, groups are also compared on some de­pendent variable; these groups, however, are different on some variable before the study begins. Perhaps one group possesses a characteristic and one does not, or per­haps each group is a mem ber of a different socio economic level. In any event, the dii­ference between the groups (the independent variable) is not, was not, or could not be determined by the researcher. Further, since the independent variable has already oc­curred, the same kinds of controIs cannot be exercised as in an experimental study. Due to the lack of manipulation and control, cause-effect relationships established are at best tenuous and tentative. On the positive side, causal-comparative studies are less expen­sive and take much less time to conduct. Further, apparent cause-effect relationships may lead to experimental studies deslcned to confirm or disconfirm the findings. Also , there are a number of important variables which simply cannot be manipulated. Studies designed to investigate the effects of a broken home, intelligence, or sex on achieve­ment must be causal-comparative, as none of these variables can be manipulated. The folIowing are examples of typical causal-comparative studies:
1.    The effect of kindergarten attendance on achievement at the end of the first grade.
The independent variable, or cause, is kindergarten attendance (students attended kindergarten or they did not); the dependent variable, or effect, isachievement at the end of the first grade. Two groups of first graders would be identified-one group who had attended kindergarten and one group who had not. The achieve­ment of the two groups would be compared.
2.    The effect of having awarking mother on school absenteeism. The independent variable, or cause, is the employment status of the mother (the rnother works or does not work); the dependent variable, or effect, is absenteeism, or number of days absent. Two groups of students would be identified-one group who had working mothers and one group who did not. The absenteeism of the two groups
would be compared.
3.    The effect of sex on algebra achievement. The independent variable, or cause, is sex (male versus female); the dependent variable, or effect, is algebra achievement. The achievement of males would be compared to the achievement of females.

Terjemahan
Penelitian Kausal-Komparatif dan Eksperimental
Berikut ini adalah contoh2 tipikal studi eksperimental:
1.       Keefektifan pengajaran terprogram dibandingkan dg pengajaran tradisional atas ketrampilan berhitung. Variabel bebas atau sebab adalah jenis pengajaran (terprogram vs tradisional); variabel terikat atau akibat adalah ketrampilan berhitung. Dua kelompok (lebih dipilih terbentuk acak) akan dibuka pd dasarnya mjd pengalaman yg sama, kecuali utk metode pengajaran. Setelah beberapa waktu ketrampilan berhitung mereka akan dibandingkan.
2.       Akibat pengajaran kemauan sendiri pd konsep pribadi. Variabel bebas atau sebab adalah kemauan sendiri/belajar bebas (kemauan sendiri vs langkah guru); variabel terikat atau akibat adalah konsep pribadi. 2 kelompok (diambil secara acak) akan dibuka/dipilih secara jelas sbg pengalaman yg sama, kecuali utk langkah/laju pengajaran. Setelah beberapa waktu konsep2 pribadi mereka akan dibandingkan.
3.       Akibat penguatan positif atas sikap thd sekolah. Variabel bebas atau sebab adalah jenis penguatan (misalnya positif vs negative, atau positif vs tdk ada); variabel terikat atau akibat adalah sikap thd sekolah. 2 kelompok( dipilih secara acak) akan dibuka secara jelas mjd pengalaman yg sama, kecuali utk tipe penguatan yg diterima. Setelah beberapa waktu sikap mereka thd sekolah akan dibandingkan.
Berikut ini adalah contoh2 tipikal studi kausal-komparatif:
1.     Akibat kehadiran siswa TK pd prestasi di akhir kelas pertama. Variabel bebas atau sebab adalah kehadiran siswa TK (siswa TK yg dihadirkan atau yg tdk dihadirkan); variabel terikat atau akibat adalah prestasi di akhir kelas pertama. 2 kelompok yg diberi nilai pertama akan diidentifikasi–satu kelompok yg dating di TK dan satu kelompok yg tdk hadir. Prestasi 2 kelompok akan dibandingkan.
2.     Akibat memiliki ibu yg bekerja pd ketidakhadiran di sekolah. Variabel bebas atau sebab adalah status ibu ( ibu bekerja atau tdk); variabel terikat atau akibat adalah ketidakhadiran atau jumlah hari2 absen/tdk hdr. 2 kelompok siswa akan diidentifikasi–satu kelompok yg memiliki ibu yg bekerja dg satu kelompok yg ibunya tdk bekerja. ketidakhadiran 2 kelompok akan dibandingkan.
3.     Akibat jenis kelamin pd prestasi matematika. Variabel bebas atau sebab adalah jenis kelamin (laki2 vs perempuan); variabel terikat atau akibat adalah prestasi matematika. Prestasi laki2 akan dibandingkan dg prestasi perempuan.

Guidelines for Classification
Which of the five methods is most appropriate for a given study depends upon the way in which the problem is defined. The same general problem can often be investigated using several of the methods. Research in a given area is often scquential; preliminary dcsctiptive and/or correlational studies may be conducted followed by causal­comparative and/or experimental studies, if such seem warranted. Asan example, let us look at anxiety and achievement. The folIowing studies might be conducted:
a . Descriptive: A survey of teachers to determine how and to what degree they believe anxiety affects achievement.
2.    Correlational: A study to determine the relationship between scores on an anxiety scale and scores on an achievement measure.
3.    Causal-comparative: A study to compare the achievement of a group of students classified as high-anxious and a group classified as low-anxious.
4.    Experimental: A study to compare the achievement of two groups-one group taught in an anxiety-producing environment and one group taught in an anxiety­reducing environment."

When analyzing a study in order to determine the method represented, one ap­proach is to ask yourself the folIowing series of questions. First, Was the researcher attempting to establish a cause-effect relationship? If yes, the research is either causal­comparative or experimental. The next question is, Was the alleged cause, or independent variable, manipulated by the researcher? Did the researcher control who got what and what they got? If yes, the research is experimental; if no, the research is causal-comparative. If the answer to the very first question is no, the next question should be, Was the researcher attempting to establish a relationship or use a relation­ship for prediction? If yes, the research is correlational. If no, the research is either de­scriptive or historical, and you should have no difficulty discriminating between the two (see Figure 1.1). The folIowing examples should further clarify the differences among the methods:
1.       Teacher attitudes toward unions. Probably descriptive. The study is determining the current attitudes of teachers. Data are probably collected through use of a question­naire or an interview.
2.       Effect of socioeconomic status (SES) on self-concept. Probably causal-compara­live. The effect of SES on self-concept is being investigated. The independent vari­able , socioeconomic status, cannot be manipulated.
3.       Comparison of large-group versus small-group instruction on achievement. Prob­ably experimental. The effecl of size of group on achievement is being investigated. The independent variable, group size, can be manipulated by the researcher.

Terjemahan
Petunjuk2 Klasifikasi
Manakah dr 5 metode yg plg tepat utk studi yg ada tergantung pd cara dimana masalah dibatasi. Masalah umum yg sama sering bisa diinvestigasi dg menggunakan beberapa metode. Penelitian dlm wilayah yg ada sering runtut; deskriptif preliminer dan atau studi korelasi bisa dilakukan yg diikuti dg Kausal-komparatif dan atau studi eksperimental, jika semacam itu kelihatannya terjamin. Sebagai contoh, marilah kita lihat kecemasan dg prestasi. Studi2 berikut ini mgkn bisa dilakukan:
1.     Deskriptif: sebuah survey guru utk menentukan bagaimana dan pd tingkat apa mereka percaya kecemasan berakibat pd prestasi.
2.     Korelasi: sebuah studi utk menentukan hubungan antara skor pd skala kecemasan dg skor pd ukuran prestasi.
3.     Kausal-komparatif: sebuah studi utk membandingkan prestasi sebuah kelompok siswa dikelompokkan yg memiliki kecemasan tinggi sama dg kelompok yg memiliki kecemasan yg rendah.   
4.     Eksperimental: sebuah studi utk membandingkan prestasi 2 kelompok–satu kelompok dibelajarkan dlm lingkungan yg menghasilkan kecemasan dg satu kelompok yg dibelajarkan dlm lingkungan yg mengurangi kecemasan.
Berikut contoh2 seharusnya lebih jauh mengklarifikasikan perbedaan antar metode:
1.     Sikap guru thd persatuan. Mungkin deskriptif. Studi menentukan sikap guru sekarang. Data mungkin dikumpulkan melalui penggunaan questioner atau interview.
2.     Akibat status sosioekonomik (SES) pd konsep pribadi. Mgkn kausal-komparatif. Akibat SES pd konsep pribadi sdg diteliti. Variabel bebas, status sosioekonomik, tdk bisa dimanipulasi.
3.     Perbandingan pengajaran kelompok besar vs kelompok kecil thd prestasi. Mgkn eksperimental. Akibat ukuran kelompok pd prestasi sdg diteliti. Variabel bebas, ukuran kelompok, bisa dimanipulasi oleh peneliti.

Tidak ada komentar:

Posting Komentar